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The mean size of unordered binary avalanches on infinite directed random networks may be determined
using the damage propagation function introduced by �B. Samuelsson and J. E. S. Socolar, Phys. Rev. E 74,
036113 �2006��. The derivation of Samuelsson and Socolar explicitly assumes a Poisson distribution of out-
degrees. It is shown here that the damage propagation function method may be used whenever the in-degree
and out-degree of network nodes are independently distributed; in particular, it is not necessary that the
out-degree distribution be Poisson. The general case of correlated in- and out-degrees is discussed and numeri-
cal simulations �on large finite networks� are compared with the theoretical predictions �for infinite networks�.
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Unordered binary avalanches �UBAs� on directed net-
works are defined in �1� and used to infer several interesting
results for the dynamics of cascades on random Boolean net-
works. Percolation transitions and avalanche size distribu-
tions are characterized by a single function termed the dam-
age propagation function. The analysis of �1� is based on the
assumption of Poisson-distributed out-degrees and thus ex-
plicitly excludes, for example, regular random graphs. The
purpose of the present note is to show that for large networks
the mean avalanche size, and hence percolation transitions,
may be found using the damage propagation function even
when the out-degree distribution is not Poisson. Indeed this
single function is shown to be sufficient to determine the
mean avalanche size whenever the in-degree and out-degree
of nodes are independently chosen from arbitrary distribu-
tions �including the case of random regular graphs�. How-
ever, if the in-degree and out-degree of nodes are correlated
then a single function is no longer sufficient to determine the
mean avalanche size.

The mean avalanche size in a network of N binary-valued
nodes is calculated by determining the number n of nodes
with value 1 �“damaged nodes”� in each realization once the
avalanche has run to completion, and then averaging the
fraction n /N over the ensemble of random networks �1�:

� = lim
N→�

�n/N� . �1�

Our analytical results are derived under the infinite-network
assumption N→�, but show good agreement with numerical
simulations for large but finite networks �see Figs. 1 and 3
for examples�. As noted in �1�, the value of � acts as an order
parameter for certain percolation transitions: the sparse per-
colation �SP� transition occurs when � changes from zero to
a nonzero value, while the exhaustive percolation �EP� tran-
sition is found when � reaches 1. The quantity � also plays
an important role in threshold-decision models �2,3�—in
these applications �on undirected networks� � gives the ex-
pected fraction of damaged nodes after cascades have run to
completion. Of particular interest in all cases are UBAs that
are initiated by damage at a nonzero fraction � of seed nodes.

The damage propagation function g�x� is defined as the
probability that a random node will be damaged, given that
each input is damaged with probability x. Given the in-

degree distribution Pin�j� of the network �in the N→� limit�
and the probability P0�j , i� that a node of in-degree j be-
comes damaged if i of its inputs are damaged, the damage
propagation function may be written as

g�x� = � + �1 − ���
j

Pin�j�G�j,x� , �2�

where we introduce the notation G for the frequently occur-
ring function

G�j,x� = �
i=0

j � j

i
	xi�1 − x� j−iP0�j,i� . �3�

Note that we have slightly generalized the definition of �1� to
include the nonzero probability � of a node being damaged
initially: Eq. �A1� of �1� is recovered by setting �=0 in Eq.
�2� above. We also assume here that the graph is connected;
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FIG. 1. �Color online� The order parameter � for the exhaustive
percolation example described in the text, as a function of the per-
colation parameter p. Curves show the predictions of Eqs. �4�–�6�;
symbols show the average fraction of damaged nodes over 100
realizations of random networks of 105 nodes. Open symbols are for
Poisson out-degrees and closed symbols are for regular out-degrees
�i.e., each node having exactly two outputs�; in all cases the mean
degree is z=2 and initial damage fraction is �=0.01. Left curve and
squares: Poisson-distributed in-degrees. Right curve and triangles:
regular in-degrees �i.e., each node has exactly two inputs�. Middle
curve and circles: Poisson-distributed in-degrees, with out-degree of
each node set equal to its in-degree.
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the case of disjoint clusters within the network will be con-
sidered further below.

Consider the case where all nodes are updated synchro-
nously at time steps m=1,2 , . . . �the order independence of
the UBA implies that the same steady-state results are found
for synchronous or asynchronous updating�. The ensemble-
averaged fraction of damaged nodes at time step m is de-
noted by �m and its steady state �as m→�� gives the mean
avalanche size � defined in Eq. �1�.

Defining xm as the probability at time step m that a ran-
domly chosen input to a randomly chosen node has value 1,
we obtain the expression

�m+1 = � + �1 − ���
j

Pin�j�G�j,xm� = g�xm� , �4�

with �0=� �4�. In order to iterate this equation to determine
the expected fraction of damaged nodes as m→�, we re-
quire an updating equation for xm. We consider the general
case where the network has a joint probability distribution
for in- and out-degrees �5�: P�j ,k� being the probability that
a random node has in-degree j and out-degree k. Then the
out-degree distribution of nodes which input to a randomly
selected node is proportional to kP�j ,k�, reflecting the fact
that nodes with high out-degrees k are more likely to occur
as inputs to our initially chosen node �5�. The appropriately
normalized joint in- and out-degree distribution for nodes
which input to a selected node is thus k /zP�j ,k�, �where
z=� j,kjP�j ,k�=� j,kkP�j ,k� is the mean degree of the net-
work� and xm is updated as

xm+1 = � + �1 − ���
k,j

k

z
P�j,k�G�j,xm� , �5�

with x0=�. Iteration of Eqs. �4� and �5� enables us to calcu-
late the mean avalanche size for networks with arbitrary joint
distributions P�j ,k� of in- and out-degrees.

Considerable simplification of Eqs. �4� and �5� occurs if
the joint distribution factorizes so that P�j ,k�= Pin�j�Pout�k�.
This is the case, for example, if the in-degree and out-degree
of each node are independent random numbers. It also ap-
plies if all in-degrees or all out-degrees are equal, as is the
case for regular random graphs. For such special cases, the
summation over k in Eq. �5� may be performed to give an
iteration for xm in terms of the damage propagation function:

xm+1 = g�xm� . �6�

Comparing with Eq. �4� we see that in this case the quantities
�m and xm are identical at all time steps, and so a single
iteration equation �equivalently, the single function g�x�� suf-
fices to determine the order parameter �. Note that provided
P�j ,k� factorizes, no assumption on the form of Pout�k� is
needed, and in particular it is not necessary that Pout be Pois-
son as in �1�. However, for general networks with nonfactor-
izing P�j ,k� a single function is no longer sufficient to de-
termine the mean avalanche size �and hence the percolation
transitions�, as Eq. �5� cannot then be expressed in terms of
the damage propagation function �2�.

To demonstrate the accuracy of these results we consider
the model of exhaustive percolation �EP� proposed in �1�. In

this adjusted bond-percolation problem all zero-input nodes
are initially damaged, as are a fraction � of the remaining
nodes. Also, any node whose inputs are all damaged be-
comes damaged itself. Each directed link in the network
is set to transmit damage with probability p, as in standard
bond percolation. The function P0�j , i� for this model is
1− �1− p�i for i� j, with P0�j , j�=1 and the sums over both j
and k in the various iteration equations may be easily ob-
tained in closed form �1�. Figure 1 demonstrates that results
of numerical simulations for N=105 nodes �symbols� match
the theoretical predictions for N→� �curves� of Eqs. �4�–�6�
very well. Recall that our claim is that the mean avalanche
size does not depend on the out-degree distribution, provided
that P�j ,k� factorizes. This is supported by the fact that for
the cases with uncorrelated in- and out-degrees both open
symbols �Poisson out-degrees with z=2� and closed symbols
�every out-degree equal to z=2� fall on the same theoretical
curve—the case of Poisson in-degrees is shown with squares
�leftmost curve�, while the regular in-degree case �Pin�j�
=� jz� is shown with triangles �rightmost curve�.

All networks are generated using the “configuration
model” described in �6�: for each node a pair of �possibly
correlated� random integers �j ,k� are selected and the node is
endowed with j “in-stubs” and k “out-stubs.” Having gener-
ated the stubs for all nodes, each in-stub is randomly con-
nected to an out-stub to form a link of the network. When all
the stubs are connected �7� the resulting network is a realiza-
tion of an ensemble characterized by the joint distribution
P�j ,k� �which may, for example, have power-law tails�. Self-
links and short loops occur with probabilities on the order of
1 /N and so may be neglected in the N→� limit �6�.

To generate an example of a strongly correlated network
with Poisson in- and out-degree distributions we constrain
the out-degree of every node to equal its in-degree. The ac-
curacy of our extended result for this case of P�j ,k�
=� jkPin�j� is shown in Fig. 1 by the match of circles �numeri-
cal simulations� to the theory of Eqs. �4� and �5� �middle
curve�. Note that the joint distribution P�j ,k� is not equal to
Pin�j�Pout�k� in this case and so the single-function simplifi-
cation of Eq. �6� is not applicable here.

In Fig. 2 we compare the value of the order parameter �
on the �z , p� parameter plane for the same EP problem and
with no initial damage: �=0. The white-colored region cor-
responds to �=1 and hence to exhaustive percolation; this
allows a direct comparison with Fig. 3 of �1�. Both in- and
out-degree distributions are Poisson for both panels of Fig. 2,
but for �a� the in- and out-degrees are uncorrelated �as in
�1��, while in �b� the in-degree of each node equals its out-
degree. The effect of the correlations on the EP region is
clearly dramatic.

This approach may also be applied to the sparse percola-
tion �SP� problem considered briefly in �1�. The SP transition
occurs for parameter values where an infinitesimally small
seed fraction � is sufficient to generate nonzero average ava-
lanche sizes. For this standard bond percolation problem,
Eqs. �4� and �5� are applicable �cf. Eqs. �83�–�86� of �8��
with P0�j , i�=1− �1− p�i and taking the limit of zero seed
fraction, �→0. As noted in �1�, the SP transition point may
be located for the uncorrelated case by examining the slope
of g�x� at x=0; a general criterion for correlated in- and
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out-degrees follows from applying the same argument to the
slope of the right-hand side of Eq. �5� at x=0. It easily fol-
lows that the critical value of p for bond percolation is given
by �6,9�

pc =
z

� j,k
jkP�j,k�

. �7�

In the uncorrelated case this reduces to pc=1 /z, as found in
Eq. �23� of �1�. It is not necessary for Pout to be Poisson and
in particular this result holds for the regular random graphs
which are specifically excluded in the discussion of Eq. �23�
in �1�.

Strictly speaking, our derivation of Eq. �4� implies that
the value of � obtained is the fraction of damaged nodes
within the connected component�s� of the network which are
accessible from the seed node�s�. When z�2 as in Figs. 1
and 2, the giant connected component essentially includes
the whole network and so � admits the interpretation of
overall network damage fraction as above. However, in cases
where the network is composed of disconnected clusters only
those clusters which are successfully seeded by the initially
damaged fraction � can attain the average damage level �
predicted by Eq. �4�. The effect of this is particularly marked
for the sparse percolation problem where single nodes are
seeded to give �=1 /N, with the limit �→0 as N→�. We
therefore expect to see deviations from the predictions of Eq.
�4� for SP when � is vanishingly small and the network graph

is poorly connected �but we note the transition point �7� is
not affected by this�.

Figure 3 shows numerical results for the average fraction
of damaged nodes in the SP problem with p=1 on networks
with exactly one input per node. This z=1 case is precisely at
the percolation transition point �7� and so gives a clear dem-
onstration of the differences between the Poisson out-degree
�open symbols� and regular out-degree �closed symbols�
cases on finite-sized networks with N=104 �diamonds� and
N=105 �triangles� nodes. These results should be compared
with the theoretical prediction for the N→� limit: Eq. �5�
gives

xm+1 = � + �1 − ��xm �8�

for this case which implies xm+1�xm for any nonzero seed
fraction �. Consequently we obtain x�=1, with order param-
eter �=1. For any fixed �i.e., N-independent� value of � we
see convergence toward this theoretical value as N is in-
creased. However, because the distribution of connected in-
component sizes depends on the out-degree distribution of
the network �see, for example, Eq. �85� of �8�� we observe a
strong dependence on the out-degree distribution when the
seed fraction � is not large enough to activate all the discon-
nected clusters in each network. We conclude that Eqs. �4�
and �5� correctly predict expected damaged fractions on the
whole network if either: �i� the network is sufficiently well
connected, or �ii� the fraction � of initially damaged nodes is
sufficiently large to ensure all disconnected clusters are
seeded.

In summary, we have shown that if the joint in- and out-
degree distribution P�j ,k� may be factored as Pin�j�Pout�k�
then the single function g�x� defined in �1� is sufficient to
determine the average avalanche size in infinite connected
networks via the iterated mapping �6�. This result allows the
determination of percolation transitions but does not require
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FIG. 2. �Color online� Order parameter � on the �z , p� plane for
networks with Poisson-distributed in- and out-degrees, with z=2
and �=0. �a� Uncorrelated in- and out-degrees, as in Fig. 3 of �1�;
�b� correlated case, with in- and out-degree of each node being
equal.
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FIG. 3. �Color online� Order parameter � for the SP case with
full bond occupation �p=1� on networks with one input per node, as
a function of seed fraction size � and averaged over 100 network
realizations. Open symbols denote Poisson out-degrees, and closed
symbols denote regular out-degrees �exactly one output per node�.
Convergence to the theoretical result �
1 for infinite networks is
indicated by increasing the network size from N=104 �diamonds� to
N=105 �triangles�. Note that the smallest seed fraction shown, �
=10−4, corresponds to a single node being seeded in the networks of
size N=104.
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that Pout be Poisson, and so generalizes the work of �1�. In
the general case where the in- and out-degrees are correlated
we have demonstrated that the computation of the average
avalanche size requires two iterating functions �Eqs. �4� and
�5�� rather than the single damage propagation function of
�1�. These results on the average avalanche size are valid for
networks in the N→� limit with arbitrary degree distribu-
tions �4� generated by the configuration model described
above, provided �as demonstrated in a critical case in Fig. 3�
that the network is well connected or the number of seed
nodes ���N� is sufficiently large. Our analysis assumes the
infinite-network size limit, but results of numerical simula-
tions for networks of finite �but large� size show excellent
agreement with the theory.

While we have shown that the mean size of avalanche on

networks in the infinite-size limit may be calculated under
more general conditions than those considered in �1�, much
work remains to be done. We note from our numerical simu-
lations that even when P�j ,k� factorizes the full probability
distribution function �pdf� of avalanche sizes shows a depen-
dence on the type of out-degree distribution, despite the fact
the mean avalanche size �i.e., first moment of the pdf� is
independent of the out-degree distribution in such cases. Fur-
ther work is therefore required to extend the theory for the
Poisson out-degree case examined in �1� to find the full dis-
tribution of avalanche sizes in networks with arbitrary degree
distributions.
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